Modelling autoregressive processes with a shifting mean
نویسندگان
چکیده
This paper contains a nonlinear, nonstationary autoregressive model whose intercept changes deterministically over time. The intercept is a flexible function of time, and its construction bears some resemblance to neural network models. A modelling technique, modified from one for single hidden-layer neural network models, is developed for specification and estimation of the model. Its performance is investigated by simulation and further illustrated by two applications to macroeconomic time series.
منابع مشابه
Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes
Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle’s Lagrange Multiplier test, clear evidences are found for t...
متن کاملVector Autoregressive Model Selection: Gross Domestic Product and Europe Oil Prices Data Modelling
We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...
متن کاملSTAT 4 : Advanced Time
4. Course Outline: (i) Review of Linear ARMA/ARIMA Time Series Models and their Properties. (ii) An Introduction to Spectral Analysis of Time Series. (iii) Fractional Differencing and Long Memory Time Series Modelling. (iv) Generalized Fractional Processes. Gegenbaur Processes. (v) Topics from Financial Time Series/Econometrics: ARCH and GARCH Models. (vi ) Time Series Modelling of Durations: A...
متن کاملEC 821 : Time Series Econometrics Spring 2003
2 1 1 =0 | | d t t t p p q q d d k k t () () ()(1) () = () (0) () () (1) (1) = () ())(+ 1) () () 0 5 1. Fractionally integrated timeseries and ARFIMA modelling 1 This presentation of ARFIMA modelling draws heavily from Baum and Wiggins (2000). The model of an autoregressive fractionally integrated moving average process of a timeseries of order , denoted by ARFIMA , with mean , may be written u...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کامل